
ACE: Efficient GPU Kernel Concurrency for Input-Dependent
Irregular Computational Graphs

Sankeerth Durvasula

University of Toronto

Toronto, Canada

sankeerth.durvasula@mail.utoronto.ca

Junan Zhao

University of Toronto

Toronto, Canada

adrian.zhao@mail.utoronto.ca

Raymond Kiguru

University of Toronto

Toronto, Canada

raymond.kiguru@mail.utoronto.ca

Yushi Guan

University of Toronto

Toronto, Canada

yushi.guan@mail.utoronto.ca

Zhonghan Chen

University of Toronto

Toronto, Canada

zhonghan.chen@mail.utoronto.ca

Nandita Vijaykumar

Vector Institute, University of Toronto

Toronto, Canada

nandita@cs.toronto.edu

Abstract
GPUs are widely used to accelerate many important classes of work-

loads today. However, in this work, we observe that several impor-

tant emerging classes of workloads, including simulation engines

for deep reinforcement learning and dynamic neural networks,

are unable to fully utilize the massive parallelism that GPUs offer.

These applications tend to have kernels that are small in size, i.e.,

have few threads and thread blocks that cannot saturate the GPU’s

compute resources. Executing independent kernels concurrently
is a promising approach to improve parallelism and utilization.

However, this inter-kernel concurrency is difficult to leverage in

such workloads with existing approaches: First, the inter-kernel

dependencies and computational graph are input-dependent and

vary each time the application is executed. Second, the computa-

tional graphs tend to be irregular, requiring fine-grain scheduling

and synchronization; thus incurring significant synchronization

overheads if kernel execution is parallelized. In this work, we pro-

pose ACE, a new framework that enables lightweight detection

of inter-kernel dependencies and low overhead kernel scheduling

at runtime. The key idea behind ACE is to perform inter-kernel

dependency checks for a small window of kernels at runtime, simi-

lar to out-of-order instruction scheduling. This enables concurrent

execution of kernels in applications whose computational graphs

are input-dependent and require fine-grained scheduling. We pro-

pose ACE-SW, a software-only open-source implementation of ACE

and ACE-HW, a hardware-software cooperative implementation.

ACE-HW further reduces synchronization overheads by reducing

communication between the CPU and GPU. We evaluate ACE for

deep RL simulation engines and dynamic and static DNNs on both

real hardware and a GPU simulator. We demonstrate speedups of

up to 2.19× (1.56× on average) by improving GPU utilization with

concurrent kernel execution.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PACT ’24, October 14–16, 2024, Southern California, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0631-8/24/10

https://doi.org/10.1145/3656019.3676897

CCS Concepts
•Hardware; • Computer systems organization→ Architectures;

Keywords
Workload performance Analysis, GPU Architecture

ACM Reference Format:
Sankeerth Durvasula, Junan Zhao, Raymond Kiguru, Yushi Guan, Zhonghan

Chen, and Nandita Vijaykumar. 2024. ACE: Efficient GPU Kernel Concur-

rency for Input-Dependent Irregular Computational Graphs . In Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT
’24), October 14–16, 2024, Southern California, CA, USA. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3656019.3676897

1 Introduction
Graphics Processing Units (GPUs) today are commonly used to ac-

celerate a diverse set of applications, such as deep neural network

(DNN) processing, scientific computing, graphics, and cryptography.

The massive parallelism offered by GPUs enables efficient computa-

tions on large amounts of data concurrently. However, we observe

that certain important classes of applications, such as simulation

engines for deep reinforcement learning (RL) [29, 33, 56, 60, 72]

and dynamic neural networks [18, 25, 38, 51, 53, 77, 80, 82, 83, 85–

87, 93, 94], are unable to fully utilize the significant compute capabil-

ity GPUs offer. This is because these applications comprise a large

number of small kernels, i.e., kernels with few thread blocks that are

unable to fully saturate GPU cores. To understand the challenges in

alleviating this underutilization, we evaluate two important classes

of applications and introduce their properties.

Simulation Engines for Deep RL.With reinforcement learn-

ing (RL), an agent (for example, a robot) learns to perform tasks

such as robotic locomotion, manipulation, and navigation [23, 45]

by trial and error from interactions with the environment. Deep RL

training involves using a DNN to learn policies that optimize for re-

wards from data collected by simulation. By leveraging the benefits

of DNNs, deep RL has recently gained widespread application for

many challenging and important tasks [15, 21, 45, 48, 58, 69, 75, 89].

Despite leveraging GPUs, a significant fraction of the deep RL

runtime is the data collection phase (up to 70%), where physics

simulations are used to generate training data. We observe that

these physics simulations contain kernels with few thread blocks

and heavily underutilize the GPU, only achieving an occupancy of

34% on average. Programming larger kernels is impractical as each

https://doi.org/10.1145/3656019.3676897
https://doi.org/10.1145/3656019.3676897

PACT ’24, October 14–16, 2024, Southern California, CA, USA Durvasula, et al.

instance simulates a different scenario, and large kernels would

lead to thread divergence.

Dynamic DNNs. Several recent types of DNNs [18, 25, 65, 93]
have emerged as a promising approach to reduce inference laten-

cies in resource-constrained devices by re-configuring/specializing

the architecture based on the input to the DNN. For example, In-

staNAS [25] configures the network architecture at runtime based

on the input image. Our evaluations demonstrate that, while these

architectures require significantly fewer FLOPs and lower inference

latencies, there is still significant underutilization of GPU resources

(achieving an occupancy of only 39% on average). Similar to the

simulation engines, we find that this underutilization is caused by

small kernels that do not fully utilize the GPU cores.

GPU kernels from such applications are typically executed se-
rially, and thus the utilization is determined by the size (i.e., the

number of threads and thread blocks) of the kernel. However, we

observe that many kernels are independent and thus can be exe-

cuted concurrently. By concurrently executing independent kernels,

we can effectively improve GPU utilization and thus performance.

Existing GPU architectures allow for concurrent execution of ker-

nels by using multiple command queues [4] which are abstracted

in software (such as CUDA Stream [5]), allowing the programmer

to identify and launch independent kernels in parallel. However,

enabling concurrent kernel execution for these applications is still

a challenging task for two major reasons.

Challenge 1: Input-dependent computational graphs. For
these applications, the computational graph (i.e. the kernels to be

executed and their dependencies) is only resolved at runtime based

on the input, and each input or set of inputs leads to a different com-

putational graph. This means that identifying independent kernels

to launch in parallel requires performing inter-kernel dependency

checks at runtime. These workloads have short running kernels that

significantly exacerbate the scheduling and dependency checking

overheads, making this a challenging problem to solve. Frameworks

such as CUDA Graph [1] and AMD ATMI [2] allow programmers

to define the inter-kernel dependency information and construct a

directed acyclic graph (DAG) of kernels. These frameworks enable

concurrent kernel execution. However, when inter-kernel depen-

dencies vary by input, we must incur the significant latency of

constructing the dependency graph and scheduling independent

kernels every time the application is executed, significantly increas-

ing run time (§ 2.3 and § 6).

Challenge 2: Irregular inter-kernel dependencies require
fine-grain scheduling. The computational graph for a given input

tends to be highly irregular. In other words, the kernels cannot be

easily partitioned into independent streams and fine-grain sched-

uling is required to expose inter-kernel parallelism. Thus, parallel

execution of kernels requires frequent synchronization to ensure

correctness, leading to significant synchronization overheads from

communicating with the CPU and from kernel launches (§ 2.3).

To address these challenges, our goal in this work is to enable

kernel concurrency with (i) lightweight scheduling and dependency
checking of kernels that can be performed at runtime and (ii) low
overhead synchronization for scheduling and kernel launch. To this

end, we propose ACE, a new framework for Automatic Concurrent

Execution with two implementations: (i) ACE-SW, a software-only

mechanism to enable lightweight kernel scheduling at runtime and

(ii) ACE-HW: a hardware-software mechanism to further reduce

synchronization overheads for efficient kernel concurrency.

The key idea of ACE is to perform dependency checks between

sequentially launched kernels within a fixed window at runtime,

similar to out-of-order instruction scheduling. We refer to this win-

dow as the scheduling window. When a kernel is inserted into the

scheduling window, the kernels that it is dependent on are iden-

tified. As kernels complete execution, kernels in the scheduling

window are marked ready based on the identified dependencies.

Ready kernels can then be concurrently launched as they have no

more dependencies. Since at any given time, only a small set of ker-

nels are scheduled and tracked (instead of the entire computational

graph), this approach enables efficient kernel parallelization and

scheduling at runtime. To perform dependency checks between ker-

nels, ACE leverages annotations from the application that specify

the memory address ranges that are read/written by each kernel.

This metadata is then used to identify inter-kernel dependencies

at runtime when kernels are inserted into the scheduling window.

Compared to prior approaches (§ 3.1), this method alleviates the

significant kernel scheduling and dependency-check overheads for

kernel parallelization.

ACE-SW implements the above out-of-order runtime kernel

scheduling in software as an application runtime system using

CUDA streams. ACE-SW however still incurs synchronization over-

heads from communication with the CPU and kernel launch. On the

other hand, ACE-HW implements the out-of-order kernel scheduler

in the GPU hardware and can alleviate the synchronization over-

heads. We propose an efficient implementation of ACE-HW that

reduces synchronization and kernel overheads by reducing commu-

nication with the CPU. Prior works such as task superscalar [31],

carbon [49], TDM [19] and ADM [70] propose similar out-of-order

scheduling to leverage irregular parallelism between tasks in CPU

multiprocessors. However, the major challenge in CPUs is the la-

tency of runtime dependence checking. The primary bottleneck

with GPUs is the latency for launch/signal completion of kernels

rather than dependence checking (§ 4.4). ACE addresses this chal-

lenge and provides an efficient approach to enable out-of-order

kernel scheduling in GPUs.

We demonstrate the effectiveness of ACE in improving GPU uti-

lization and thus performance for physics simulation workloads,

a range of dynamic neural networks, as well as static neural net-

works.We demonstrate an average speedup of up to 1.87× using our
software-only approach and up to 2.19× from hardware-software

implementation. The major contributions of this work are:

• We identify and characterize GPU underutilization as a result

of small kernels in applications with input-dependent irreg-

ular computational graphs, e.g., deepRL, dynamic DNNs.

• We introduce ACE, a mechanism that improves GPU utiliza-

tion by enabling concurrent execution of GPU kernels with a

lightweight dependency tracking and scheduling framework.

• We provide an open source software-only implementation

of ACE that can be used on real hardware to enable low

overhead GPU kernel concurrency.

• We evaluate the effectiveness of ACE-SW and ACE-HW on

a range of important GPU applications and demonstrate

significant speedups and improved GPU utilization.

ACE: Efficient GPU Kernel Concurrency for Input-Dependent Irregular Computational Graphs PACT ’24, October 14–16, 2024, Southern California, CA, USA

2 Motivation
2.1 Case Study 1: Simulation Engines for Deep

Reinforcement Learning
Deep Reinforcement Learning (RL) has widely gained attention

as a promising approach to learning control policies in robotics

and dynamical systems for tasks such as locomotion on legged

robots [33, 69, 89], dexterous hand manipulation [23], autonomous

driving [21, 45], and drone control [15, 48, 58]. Deep RL involves

training a DNN to learn policies that maximize the reward, based

on the actions that the agent (e.g., four-legged robot) performs in a

given environment. This training process requires data from the

agent interacting with a physics simulator. Typically, each training

step requires data from thousands of physics simulations. Recent

works [29, 33, 35, 56, 60, 72] accelerate this data generation phase

by leveraging GPUs. GPUs can accelerate data generation by per-

forming multiple simulations simultaneously and also parallelizing

within a single simulation. Hence this makes them an appropri-

ate candidate workload for GPU execution. Despite GPU accelera-

tion, the simulation/data generation phase is still the predominant

computation in deep RL—taking about 30 − 70% of training time

depending on the complexity of the simulated environment. Thus

accelerating simulation engines is critical for deep RL performance.

To evaluate the efficiency of physics simulations, we analyzed a

set of physics simulations with different environments on a GPU

(parameters in § 5) with the widely used Brax [33] framework.

We evaluate the utilization of the GPU by measuring achieved

occupancy (average ratio of active warps), depicted in Fig. 1. We

find that as much as 65% of the GPU cores are underutilized on

average. To evaluate the cause of this underutilization, we analyze

the number of kernel launches required to generate one batch of

training data in Fig. 2. We also present the average number of

CTAs per kernel in Fig. 3 and depict the distribution of kernel sizes

observed for the ant environment in Fig. 4. We observe that physics

simulations in our evaluations generate a large number of small
kernels that have few threads and CTAs. Each CTA is mapped to a

single SM at kernel launch time. Running kernels with fewer than

50 CTAs leads to many idle SMs, leading to underutilization.

This is a fundamental problem, because the simulation engine

cannot be efficiently mapped into large kernels, since each thread

simulates a different scenario, which leads to high thread diver-

gence. Thus, the application is instead programmed as many short-

running kernels. This phenomenon has also been observed by re-

cent works [34, 35]. However, there is still parallelism between

kernels that can be leveraged during the collisions detection be-

tween every pair of rigid bodies, which can be parallelized.

2.2 Case Study 2: DNNs with Dynamic Graphs
Recent research has extensively investigated specialized DNNs for

edge devices with limited compute resources and power budgets as

direct deployment of large neural network architectures on these

devices leads to high-inference times. Automated DNN architec-

ture design (neural architecture search) is a promising approach

to generate faster neural network architectures while retaining or

improving accuracy [52, 67, 88, 96]. These optimized architectures

tend to have irregular elaborate connections between convolution

operations. Fig. 5a depicts an example DNNwith irregular structure.

Additionally, an emerging trend in recent research [65] shows that

dynamic inference models [14, 25, 51, 53, 73, 77, 80, 82, 83, 86, 87, 91–
94] are very promising to significantly reduce inference latency and

FLOPs. With these dynamic inference models, the path of execution

through the network is determined by the input. Thus, the computa-

tional graph is not known ahead of time. For example, Fig. 5b shows

an example CNN model with different paths of execution based

on the input [25]. Dynamic DNNs have the structure as shown in

Fig. 5b, containing operations (MBConv blocks implemented as

kernels) that can be parallelized. A subset of these kernels can be

scheduled for concurrent execution.

Figure 1: Simulation engines: Achieved occupancy.

0
10
20
30
40

ant human ct w2d grasp gmean

K
e
rn

e
l

L
a
u

n
c
h

(M

il
li
o

n
s
)

Figure 2: Simulation engines: Kernels for 1 batch of data

0
50

100
150

ant human ct w2d grasp gmean

K
e

rn
e
l

S
iz

e

Figure 3: Simulation engines: Average kernel size (in CTAs)

0

20

40

0-9 10-49 50-199 200+

F
ra

c
ti

o
n

o

f
K

e
rn

e
ls

(%

)

Figure 4: Kernel size distribution for the ant environment

Similar to § 2.1, we evaluate the efficiency of these workloads on

a GPU (an NVIDIA RTX 3060 and an NVIDIA RTX 4090) and depict

the resulting utilization in Fig. 6 (evaluation and workload settings

are in § 5). We find that the total achieved occupancy is around

39% in the InstaNAS-A [25] workload on RTX 3060. We observe

a higher degree of underutilization on a more recent GPU, with a

higher SM count. Similar to the simulation engines, we root cause

this underutilization to the existence of a large number of small

kernels, as depicted in Fig. 7, where a large fraction of the kernels

have fewer than 200 CTAs. Thus, these small kernels are unable to

fully utilize the GPU. In these workloads, the small kernels are due

to convolution layers that were optimized for fewer FLOPs with

smaller filters.

PACT ’24, October 14–16, 2024, Southern California, CA, USA Durvasula, et al.

X1 X2

avg 3x3
+

concat

+

+

+

+

none

max 3x3avg 3x3

sep 3x3 nonesep 5x5 sep 3x3

max 3x3avg 3x3

(a) Amoebanet [67]

input1 add

MBConv

put1MBConv

MBConv

MBConv

MBConv

MBConv

input2 add

MBConv

put1MBConv

MBConv

MBConv

MBConv

MBConv

(b) InstaNAS [25] with MB-
Conv [71] units

Figure 5: DNNs with irregular or dynamic structures

Figure 6: Achieved occupancy in dynamic DNNs

0

40

80

0-9 10-49 50-199 200+

F
ra

c
ti

o
n

o

f
K

e
rn

e
ls

(%

)

Figure 7: Kernel size distribution (CTAs) for InstaNAS-A [25]
2.3 Key Observations
While small-sized kernels lead to underutilization, we observe that

there are typically many kernels that can be executed concurrently.
Thus we can improve GPU utilization and reduce runtimes by iden-

tifying independent kernels and scheduling them for concurrent

execution. However, this is a challenging task for these classes of

applications for the following reasons.

(1) Input-dependent kernel dependencies. The computa-

tional graph, and hence, the dependencies between kernels are

only determined at runtime for each input. For example, with the

instance-aware dynamic DNNs [25, 53, 93, 94] described in § 2.2,

for the classification inference task, the computational graph is

different for each image. As a result, the determination of kernel

dependencies and scheduling of kernels for the entire computa-

tional graph needs to be done for each input. This adds significant
latencies to the runtime.

CUDA Graphs [1] and AMD ATMI [2] are software frameworks

that allow developers to specify dependencies between different ker-

nels as edges of a directed acyclic graph (DAG). The challenge with

this approach is that the DAG needs to be constructed in full (with

dependencies, kernel launches, and barriers determined) before the

application is executed on the GPU, for each input. This process
adds high latency in compiling the complete dependency informa-

tion. We perform an experiment to measure the DAG construction

and launch time on Brax [33] simulation engine (§ 5) compared to

the program execution time, shown in Fig. 8. We observe that the

time taken to construct the graph is exceedingly high (average of

47% of overall execution time).

(2) Irregular kernel dependencies. These classes of applica-
tions have irregular computational graphs that are challenging to

easily partition into CUDA streams (§ 2.2). Popular deep learning

frameworks [8, 59] use a single stream by default. The stream ab-

straction works best if the entire graph can be partitioned into

independent streams of kernels. However, these graphs with ir-

regular dependencies would require fine-grained scheduling and

Figure 8: DAG construction time as % of execution time
heavy use of synchronization (e.g., cudaDeviceSynchronize and

cudaStreamSynchronize) when parallelizing using CUDA streams.

This synchronization may lead to large overheads as it requires

communication between the GPU and CPU. Fig. 9 depicts the dif-

ferent overheads when CUDA streams are used for fine-grained

scheduling with irregular graphs: kernel launch overheads 1 , CPU

execution overheads 2 and the synchronization overheads 3 .

Based on our profiling, the synchronization and launch overheads

vary between 5-20𝑢𝑠 .

CPU SYNC CPU EXEC

K1 EXECStream 1

K2 EXECStream 2

CPU EXEC

launch overhead

launch overheadsync overhead

K3 EXEC

1

2

3 1

2

Figure 9: Kernel launch and synchronization overheads

3 Approach
Our goal in this work is to design a framework that enables effi-

cient concurrent execution of GPU kernels (i) whose computational

graph may only be known at runtime, (ii) without incurring signif-

icant synchronization overheads. To this end, we introduce ACE, a

new framework that concurrently schedules independent kernels

with a lightweight runtime mechanism.

3.1 Prior Mechanisms
We consider the baseline hardware model in modern GPU architec-

tures [64]. The host communicates with the command processor

(CP) of the GPU via a virtual memory region mapped to the GPU

that is accessible by the command processor. This enables commu-

nication between the CPU and GPU via the command queue. The

CPU transmits kernel launch packets to the GPU by writing them to

the user mode command queue. The CP is responsible for decoding

and dispatching the kernels in these command queues for execution.

The CP accesses the command queue and schedules the kernels at

the head for execution. The GPU runtime may launch kernels into

different streams. These streams are mapped to one of the command

queues in the device-mapped memory. The command processor

schedules kernels at the head of these queues concurrently, thus en-

abling concurrent kernel execution. However, neither the command

processor nor the kernel launch packets in the command queues

have information on inter-kernel data dependencies. Kernels in

different queues are assumed to be independent of each other, and

kernels in the same queue are executed in order. Hence, to leverage

parallelism in kernel executions, the task of checking inter-kernel

dependencies and determining the kernels eligible for concurrent

ACE: Efficient GPU Kernel Concurrency for Input-Dependent Irregular Computational Graphs PACT ’24, October 14–16, 2024, Southern California, CA, USA

execution must be done by the host application. However, this adds
significant dependency-checking latency at the run time. It also

requires communication with the host (through a synchronization

routine) to be performed each time a kernel completes execution,

adding to overhead. Several prior works describe approaches to

efficiently schedule kernels into multiple streams. Fig. 10 depicts

approaches to scheduling a computational graph (Fig. 10a). Fig. 10b

is the baseline approach used by many existing frameworks [8, 59],

where a single stream is used to execute all kernels serially. This

approach leads to underutilization (§ 2.2). Fig. 10c shows prior

works [30, 50] that use the computational graph to identify inde-

pendent kernels and the entire graph is scheduled ahead of time

into multiple streams. However, this fine-grained scheduling and

synchronization leads to large overheads.

K1

K2

K4

K6

K3

K5

Launch in order

K6 K5 K4 K3 K2 K1

(a) Kernel dependencies

K1

K2

K4

K6

K3

K5

Launch in order

K6 K5 K4 K3 K2 K1

(b) Single stream execution

Stream 3

Stream 2

Stream 1 K5 K3

S
Y
N
C

K2

K4

K6

S
Y
N
C

K1

(c) Multiple streams with synchronization between streams
Figure 10: Scheduling kernels in a computational graph

Oneway to avoid using device-level synchronizations and enable

asynchronous kernel execution without communication with the

CPU is to use CUDA events. Events serve as signaling mechanisms

to indicate the occurrence of specific operations in a stream. This

allows synchronization between kernels across streams through

the cudaStreamWaitEvent API, facilitating asynchronous kernel

execution without blocking the host. By strategically placing events

and using cudaStreamWaitEvent, it is possible to orchestrate the

order in which kernels are executed on the GPU without commu-

nication with host. However, this approach still requires deriving

dependencies between all kernels beforehand, incurring overhead.

Another set of approaches [22, 50, 57], define static dependen-

cies between kernels as a DAG, which is then scheduled with DAG

frameworks (CUDA Graph [1]/ATMI [2]). These approaches cannot

be applied to input-dependent computation graphs, as constructing

the entire computational graph is too time-consuming to be done

at runtime. To convey the DAG information, ATMI sends barrier

packets [63] along with kernel launch packets to the command

queue. A barrier packet [40] is a 64-byte data packet that contains

id information about a kernel and a set of kernels that depend on it.

This packet can be inserted into the command queue by the device

runtime. The barrier packet blocks the launching of dependent ker-

nels until the independent kernel completes execution. The barrier

packet however does not contain any information regarding the

current status of the executing kernels in the GPU and thus cannot

perform any additional runtime reordering of kernels. It simply

follows the dependencies already specified by the DAG. While it

is possible to devise a framework that dynamically launches bar-

rier packets and launch commands onto the GPU command queue

in memory, this would require hardware support and would still

incur synchronization overheads with the CPU. Our approach is

specifically designed to mitigate this scheduling cost by avoiding

direct communication from the GPU to the CPU, thereby reducing

potential overheads. Persistent threads (PT) eliminate the schedul-

ing and launch overheads but are only effective when all kernels

are homogeneous [24]. CUDA dynamic parallelism [3] (CDP) or

AMD’s device enqueue [7] (DE) enables parent kernels to launch

child kernels, only allowing data dependencies between one parent

and its children. These workloads however involve kernels that

depend on multiple kernels, and it is an open problem how to use

CDP for these types of dependencies.

We summarize different approaches for parallel kernel schedul-

ing in Table 1, in terms of applicability (whether input-dependent

irregular workloads can be effectively mapped), synchroniza-

tion/launch overheads and preparation overhead (resolving de-

pendencies, constructing, and scheduling the computational graph).

Method Applicability Sync+Launch Preparation
Overhead Overhead

Multi-Stream [30, 50] ✓ x ✓
DAG Frameworks [1, 2] ✓ ✓ x
PT [16, 24, 78] x ✓ ✓
CDP [3] / DE [7] x x ✓
ACE-SW (Our approach) ✓ x ✓
ACE-HW (Our approach) ✓ ✓ ✓

Table 1: ACE compared to other scheduling frameworks

3.2 Key Idea of ACE
With ACE, the key idea is to instead perform the dependence check-

ing and scheduling within a small window of kernels at runtime
similar to out-of-order instruction scheduling. We perform this

scheduling over a single command queue (or a single initialized

stream). Fig. 11a depicts out-of-order kernel dispatch with ACE.

Fig. 11b shows the corresponding high-level hardware modifica-

tions for ACE. A fixed number of kernels in the original stream

(scheduling window 1) are evaluated for dependencies. When

a kernel completes execution, we evaluate which kernels within

the scheduling window are now ready for execution 2 . All such

kernels are marked ready and can be scheduled concurrently.

(a) Out-of-order kernel dispatch
from the scheduling window

(b) CP scheduling kernels in out
of order manner

Figure 11: ACE: Runtime out-of-order kernel scheduling

We propose two implementations of ACE: ACE-SW, a SW-only ap-

proach and ACE-HW, a hardware-software cooperative mechanism,

PACT ’24, October 14–16, 2024, Southern California, CA, USA Durvasula, et al.

which we describe in the following sections. ACE-SW emulates the

out-of-order kernel scheduling mechanism by scheduling indepen-

dent kernels into multiple streams and can be implemented with

purely software changes, however the hardware support in ACE-

HW is more efficient as it alleviates synchronization overheads.

3.3 Design Overview
To design ACE to perform the runtime kernel scheduling as depicted

in Fig. 11a, we need (i) a mechanism to determine inter-kernel

dependencies in the scheduling window; (ii) to identify kernels

that are ready for execution; and (iii) alleviate synchronization and

kernel launch overheads.

Determining inter-kernel dependencies. In order to deter-

mine dependencies between kernels, the application adds additional

metadata to each kernel invocation. This metadata defines the range

of global memory addresses that are written to and read from by

each kernel. This metadata is provided to ACE by using a kernel

wrapper (described in § 4.2) and can be defined by the program-

mer, library-writer, or compilation tools. By checking for overlaps

between read segments and write segments, we determine depen-

dencies between kernels. The kernel wrapper defines the pointers

to the read and write data segments (start_addr) along with the

size of the segments (Fig. 12). The actual virtual addresses asso-

ciated with the pointers are resolved just before kernel launch in

order to perform the dependence checks (§ 4.1). We refer to these

memory ranges as read_segments and write_segments. The run-
time software performs dependency checks between a new kernel

and a set of kernels launched earlier within a window. This infor-

mation is utilized by the hardware to identify independent kernels

and schedule them. Identifying dependencies and communicating

them to the GPU is done by the software runtime while kernels

are executing. Fast dependency checks and communication to GPU

can be hidden by GPU kernel execution. As fast dependency checks

can be performed in software, and scheduling independent kernels

for execution can be done without needing CPU communication

by the hardware, the task of dependency checking is delegated to

the runtime and scheduling is delegated to hardware.

Virtual Address Space

read segments

start_addr1 size1
start_addr2 size2

write segments

start_addr size

Figure 12: Memory regions written to/accessed by the kernel

Tracking kernel state at runtime. Fig. 13 depicts the schedul-
ing window (1), with the additional state required for scheduling.

The kernels in the window can be ready, pending, or executing
(3). Kernels in the scheduling window become ready for launch

(ready) when the kernels it is dependent on (referred to as upstream
kernels 2) complete execution. For each kernel in the scheduling

window, we track a list of the corresponding upstream kernels.

The upstream kernels are determined using the above dependency

checks when inserting into the scheduling window. When the up-

stream list is empty, the kernel is marked ready for execution. After

each kernel completes execution, the upstream list is updated for all

kernels in the scheduling window. For ACE-SW, these checks are

performed in the software runtime system (§ 4.2), and for ACE-HW,

we implement them in hardware (§ 4.3).

K4
K1 K2 K3

pending

scheduling window 1

2

3

K3
K1

pending

K2
none

ready

K1
none

executing

upstream
state

kernel id

Figure 13: Kernels in the scheduling window with their state
and corresponding upstream kernels (i.e., dependencies)

Eliminating CPU synchronization overheads. In order to

eliminate synchronization and launch overheads resulting from

communication between the CPU and GPU, we implement the

scheduling window in the GPU hardware in ACE-HW. The man-

agement of the scheduling window is done entirely in hardware,

including the determination of ready kernels. Similarly, once a ker-

nel completes execution, the scheduling window is updated without

requiring synchronization with the CPU.

3.4 MechanismWalkthrough
Fig. 14 depicts a high level walkthrough of ACE. For each GPU

kernel invoked by the application 1 , the read and write segments

are resolved (detailed in § 4.1). All invoked kernels along with the

corresponding read/write segments are entered into the input FIFO

queue to await scheduling 2 . Kernels are then added to the fixed

size scheduling window in a FIFO manner 3 . When the kernel

enters the scheduling window 4 , the write segments of the current

kernel are compared against read and write segments of all kernels

in the scheduling window. The kernels with overlap are added to

the corresponding upstream kernel list and are marked pending.
When an executing kernel completes execution, all corresponding

upstream kernel lists are updated. Any kernel that has an empty

list is marked ready for the scheduler to launch.

application

kernel
launch

compute
read/write
segment

1

K5K6

input FIFO queue 2

K1
pending

K2 K3
ready

K4
executingpending

scheduling window 4

compute
upstream
dependencies

3

ready to be dispatched

Figure 14: High level overview of ACE

4 Detailed Design
4.1 ACE Kernel Wrappers
To perform runtime dependency checks, the application defines the

read/write segments for each kernel. These segments are defined

using a kernel wrapper, ACE_wrapper (defined in Fig. 15). Since

virtual addresses can only be resolved at runtime, the program-

mer instead defines a function get_addresses which populates

__read_segments__ and __write_segments__ lists (lines 6 and 7

in Fig. 15). The get_addresses function takes kernel launch argu-

ments as the input (lines 12 to 15). These arguments are then used

to compute the read/write segments.

ACE: Efficient GPU Kernel Concurrency for Input-Dependent Irregular Computational Graphs PACT ’24, October 14–16, 2024, Southern California, CA, USA

Just before kernel launch, the CUDA runtime calls

get_addresses. At this point, __read_segments__ and

__write_segments__ are populated with resolved virtual

addresses. In our implementation of ACE-SW, since the CUDA

drivers are closed-source, we implement an intermediate user-level

kernel launch function that calls get_addresses instead. Fig. 16

depicts an example implementation of the get_addresses
function. ACE assumes that the programmer or the kernel library

provider has knowledge of the memory regions accessed by the

kernel from the kernel function prototype. For a wide range of

commonly used kernels, such as matrix multiplication, convolution,

addition, etc., which operate on data stored as contiguous regions

in memory, this task is straightforward. ACE does not require

additional programming effort from the application programmer.

This is because programmer annotations for these workloads

would be written by the library writer and thus, not necessarily

the programmer. Standard functions/kernels along with the

annotations are provided as metadata in the library.

1 struct ACE_wrapper {

2 //list of read ,write segments defined as

3 //[{start_adr1 ,size1},{start_adr2 ,size2 }..]

4 list __read_segments__;

5 list __write_segments__;

6 // function which gets called at kernel

7 // launch to populate read ,write segments

8 void get_addresses(

9 dim3 blocks , dim3 threads , ...

10);

11 // function declaration of the kernel

12 static __global__ void kernel (...);

13 };

Figure 15: The ACE_wrapper definition

1 // get address function for matrix multiply

2 // input matrices: input1 (mxn), input2(nxk)

3 // output matrix: output(mxk)

4 void ACE_wrapper :: get_addresses(

5 dim3 blocks , dim3 threads ,

6 int* input1 , int* input2 , int* output1 ,

7 int m, int n, int k) {

8 // input1 reads m*n elements

9 // input2 reads n*k elements

10 __read_segments__ = {

11 {(void*)input1 , m*n*sizeof(int)},
12 {(void*)input2 , n*k*sizeof(int)}
13 };

14 // output reads m*k elements

15 __write_segments__ = {

16 {(void*)output , m*k*sizeof(int)},
17 };

18 }

Figure 16: Example: get_addresses function

4.2 ACE-SW Design
ACE-SW is implemented as a user-level runtime that is called by

the application. The functionalities of ACE-SW are performed by

multiple independent threads that are launched simultaneously.

The ACE-SW runtime performs two major tasks: (i) implementing

and maintaining the scheduling window (window module); and (ii)
scheduling kernels ready for execution (scheduling module).

4.2.1 The window module. The window module is implemented

as a separate thread that manages the input FIFO queue and the

scheduling window. Scheduling window, dependency tracking, and

state management are performed in software within this module.

This module is called in two ways: First, when a kernel is invoked

by the application thread, this module inserts kernels into the input

queue. Second, the scheduler module (implemented as a separate

thread(s)) calls the window module when a kernel completes exe-

cution. At this point, the state of upstream lists is updated and the

kernel is removed from the scheduling window. The window mod-

ule constantly polls the input queue and the scheduling window.

When there is a vacancy in the scheduling window and a pending

kernel in the input queue, the kernel is moved into the scheduling

window. At this point, the window module performs the necessary

dependency checks and bookkeeping. Algorithm 1 describes how

the dependency check is performed.

Algorithm 1 Dependency check algorithm

Input: 𝑟𝑠𝑙𝑖𝑠𝑡1 , 𝑤𝑠𝑙𝑖𝑠𝑡1 , 𝑤𝑠𝑙𝑖𝑠𝑡2 ⊲ RW segments of scheduling window kernel,

w-segment of kernel in inputFIFO

Output: 𝑖𝑠_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 ⊲

1: 𝑖𝑠_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 = 𝑓 𝑎𝑙𝑠𝑒 ⊲ initial state of is_dependent

2: 𝑟𝑤𝑠𝑙𝑖𝑠𝑡1 ← 𝑤𝑠𝑙𝑖𝑠𝑡1
⋃
𝑟𝑠𝑙𝑖𝑠𝑡1 ⊲ Read+Write segments

3: for each 𝑠𝑒𝑔𝑚𝑒𝑛𝑡1 in 𝑟𝑤𝑠𝑙𝑖𝑠𝑡1 do ⊲ Test for every pair of segments

4: for each 𝑤𝑠2 in 𝑤𝑠𝑙𝑖𝑠𝑡2 do
⊲ get start and end virtual memory addresses

5: 𝑠𝑡𝑎𝑟𝑡1 ← 𝑠𝑒𝑔𝑚𝑒𝑛𝑡1 .𝑠𝑡𝑎𝑟𝑡

6: 𝑒𝑛𝑑1 ← 𝑠𝑒𝑔𝑚𝑒𝑛𝑡1 .𝑠𝑡𝑎𝑟𝑡 + 𝑠𝑒𝑔𝑚𝑒𝑛𝑡1 .𝑠𝑖𝑧𝑒

7: 𝑠𝑡𝑎𝑟𝑡2 ← 𝑤𝑠2 .𝑠𝑡𝑎𝑟𝑡

8: 𝑒𝑛𝑑2 ← 𝑤𝑠2 .𝑠𝑡𝑎𝑟𝑡 + 𝑤𝑠2 .𝑠𝑖𝑧𝑒

9: if 𝑠𝑡𝑎𝑟𝑡1 < 𝑒𝑛𝑑2 and 𝑒𝑛𝑑1 > 𝑠𝑡𝑎𝑟𝑡2 then
10: 𝑖𝑠_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 = 𝑡𝑟𝑢𝑒 ⊲ check start&end address overlaps

11: end if
12: end for each
13: end for each

Algorithm 2 The scheduler module in software

Input: SchedulingWindow 𝑆𝑊 , 𝑠𝑡𝑟𝑒𝑎𝑚_𝑖𝑑

1: while 𝑛𝑜𝑡𝑠𝑡𝑜𝑝 () do ⊲ poll for kernels until stop signal

2: acqire_lock(𝑆𝑊)

3: if 𝑆𝑊 .𝑟𝑒𝑎𝑑𝑦.𝑒𝑥𝑖𝑠𝑡𝑠()then ⊲ check ready kernels

4: 𝑘𝑒𝑟𝑛𝑒𝑙 ← 𝑆𝑊 .𝑟𝑒𝑎𝑑𝑦.𝑝𝑜𝑝 () ⊲ get ready kernel

5: end if
6: release_lock(𝑆𝑊)

7: launch(kernel, stream_id) ⊲ launch kernel

8: stream_sync(stream_id) ⊲ wait for completion

9: end while

4.2.2 The scheduler module. This module schedules and launches

ready kernels for execution. This module is implemented as a con-

figurable fixed number of threads, each of which launches kernels

into an independent CUDA stream for concurrent execution, as

depicted in Fig. 17. Each stream contains only one kernel at any

given time. Threads with empty streams poll the scheduling win-

dow for a ready kernel 1 , which is then launched in its CUDA

stream 2 . The thread then waits for the kernel to complete execu-

tion using the StreamSync primitive 3 . Once the kernel completes

execution, the thread calls the window module as described above.

This algorithm is described in Algorithm 2.

PACT ’24, October 14–16, 2024, Southern California, CA, USA Durvasula, et al.

K2 K1

ready kernels

Thread 1 Thread 2

Launch

StreamSync

Launch

StreamSync

K2

K1

stream2

stream1

scheduler module

1

2

3

2

3

Figure 17: ACE-SW: The scheduler module
4.3 ACE-HW Design
While ACE-SW enables concurrent kernel execution and can be

fully realized in software, it still incurs overheads from (i) synchro-
nization with the CPU when a kernel completes execution, i.e.,

the StreamSync primitive that blocks the scheduler module thread;

and (ii) the launch overhead when the scheduler module launches

a kernel. ACE-HW is designed to alleviate these overheads with

hardware support for kernel scheduling in the GPU.

Fig. 18 depicts an overview of ACE-HW. ACE-HW comprises

a software runtime system similar to ACE-SW that maintains an

input FIFO queue containing the kernels that were invoked by

the application 1 . The scheduling window and its management

are however implemented in hardware on the GPU side 2 . The

input queue is essentially implemented as a CUDA stream that

dispatches kernels to the GPU. In addition to the input FIFO queue,

the software runtime also maintains a list of kernels in the GPU’s

scheduling window, which we call the scheduled_list 3 . To

avoid frequent synchronization between the CPU and GPU, we

allow this list to be stale. Before a kernel is inserted into the sched-

uling window, the software runtime performs dependency checks

with the scheduled_list to determine the upstream kernels. Note

that since the scheduled_list may be stale, this upstream list

needs to be further updated before insertion into the scheduling

window (discussed below).

CPU

input FIFO queue 1

K3 K2K4

K7 K6 K5

scheduled list 3

GPU

K3K1

scheduling
window 2

compute stale
upstream using

scheduled list

4

upstream
load module

Figure 18: ACE-HW: Design overview

The hardware component 4 consists of two modules: (i) the
scheduling window and (ii) the upstream load module.

The hardware scheduling window structure is depicted in Fig. 19

and comprises a fixed number of slots (N) 1 . Each slot contains

an 8-bit kernel identifier and (N-1) 8-bit upstream kernel identi-

fiers that are implemented with SRAM 2 . Each slot of the SRAM

module is implemented as a single bank of SRAM, containing N-1

fully associated units to store upstream kernel identifiers. These

upstream identifiers are used to determine when a kernel is ready.
An additional two bits are used to identify the state of each kernel

(i.e., ready, pending, and executing). When a kernel completes

execution, the upstream identifiers are updated and corresponding

state of each kernel is updated. The completed kernel is removed

from the scheduling window. Any kernels that are now ready are

dispatched to the GPU’s kernel dispatch unit for execution 3 .

Slot 1
scheduling window

dependent
kernel ids

…

…

Slot 2

dependent
kernel ids

…

…

K1 K3

stale upstream
list from CPU

oldest – latest > N
yes

block
no

remove stale
dependencies

K5
K3 K4

K6
K1—

upstream load module

1

2

3

1

2

ready pending

dispatch

4

5
6

K5
K3 K4

K6
K1

kernel id
dependents

Figure 19:HWschedulingwindow andupstream loadmodule

The upstream load module is responsible for refining the

upstream list provided by the CPU, which may be stale in two ways.

It may contain kernels that have (1) already completed execution

and (2) may miss long-running kernels that are still executing. The

first case is handled by the upstream module by checking against

a list of kernels in the scheduling window 4 . The second case is

avoided by ensuring that the scheduled_list (of size M) in the

CPU never misses kernels that are still executing. The upstream

load module tracks the oldest scheduled kernel 5 . If the number

of newer kernels exceeds M (size of the scheduled_list), this
module blocks the insertion of more kernels from the CPU 6 .

4.4 ACE Overheads
(1) Hardware area overhead. ACE-HW introduces the hardware

scheduling window which contains 𝑁 slots, where 𝑁 is the size of

the scheduling window. Each slot contains 𝑁 kernel ids of upstream

data of 8 bytes each and 2 bits for status. Assuming a scheduling

window of length 𝑁 = 32, we require 1KB of SRAM for the sched-

uling module (for the entire GPU). The upstream module keeps

track of the oldest executing kernel with an 8-bit unit of mem-

ory in SRAM, and the number of kernels scheduled or completed

execution since this oldest executing kernel (5 in Fig. 19).

(2) Storage overheads. The read and write segments that are

saved as metadata in the input FIFO and the scheduled_list by
the software runtime in the CPU utilize memory. Each read, write

segment requires 48 bits to hold the start addresses and the size.

(3) Mechanism latencies. ACE-HW requires updating all up-

stream kernels in each slot of the scheduling window every time

a kernel completes execution. ACE-HW updates each slot in N-1

cycles (where N is the size of the scheduling window). Additionally,

ACE-HW requires 𝑁 cycles to insert a kernel ID with its upstream

kernel IDs into the scheduling window. For a scheduling window of

size 64, this operation adds 64 cycles (about 50-100𝑛𝑠) overhead to

dispatch a ready kernel for launch. Thus, ACE-HW adds negligible

runtime to the application compared to the baseline kernel launch

overhead (in the order of a few microseconds).

(4) Dependency checking overheads To determine the

list of upstream kernels, the CPU checks for overlaps between

the write segments of the kernel in the input queue and the

read-write segments of the kernels in the scheduled_list. As
the scheduled_list can fit completely into the cache (4KB),

dependency-checking is compute-bound and dependent on the

ACE: Efficient GPU Kernel Concurrency for Input-Dependent Irregular Computational Graphs PACT ’24, October 14–16, 2024, Southern California, CA, USA

number of read and write segments. Table 2 presents the time

required to do dependence checking. For a processor with 𝑃 exe-

cution units, effective utilization requires dependency checks to

be performed in no more than 𝑇 /𝑃 , where 𝑇 is the task execution

time [19, 31]. We estimate 𝑇 /𝑃 to be around 4𝑢𝑠 , which is more

than the dependency check latency.

Window Number of Dependency
size RW-segments check time

16

6 410ns

10 700ns

32

6 510ns

10 1640ns

Table 2: Dependency checking overhead analysis

5 Methodology
We evaluate ACE-SW on real hardware with an Intel 11700K CPU

and an NVIDIA RTX3060 GPU. We model ACE-HW using Accel-

Sim [46], configured with parameters of RTX3070 (Table 3) and an

RTX 4090 GPU (Table 4). We set the scheduling window size to 32.

Shader core 46 SMs, 1.4GHz; 4 schedulers per SM

SM Resources 32768 Registers, 32KB Shared memory, 128KB L1D

DRAM 2-channel; 16-bank; open-row policy, 16GB DDR4

Table 3: Simulated GPU configuration 1

Shader core 128 SMs, 1.4GHz; 4 schedulers per SM

SM Resources 32768 Registers, 128KB shared memory+ L1D

DRAM 2-channel; 16-bank; open-row policy, 24GB DDR4

Table 4: Simulated GPU configuration 2

Workloads.We evaluate ACE using:

(1) Deep RL physics simulations. Brax [33] is a GPU acceler-

ated simulation engine for control tasks in reinforcement learning.

We evaluate ACE with the Ant (ant), Grasp (grasp), Humanoid

(human), Cheetah (ct), and Walker2d (w2d) simulation environ-

ments. These environments are MuJoCo [81] simulations for train-

ing RL agents to perform a specific task. For example, ant contains

a robot (agent) with one body and 4 legs, each with a knee joint.

The goal is to move in a particular direction by controlling its legs.

(2) Dynamic DNNs.We evaluate our approach for 3 dynamic

DNNworkloads: InstaNAS[25] (I-NAS) is a dynamic CNN for image

classification. We evaluate our approach using the InstaNAS-A

architecture on the CIFAR10 dataset. Dynamic routing [18] (DR)
is a DNN for image semantic segmentation. We evaluate ACE on

the Dynamic-A 16 layer architecture using Cityscapes dataset [27].

Conditional Convolution [91] (CC) is a mixture-of-experts CNN

model for image classification where the weights are computed at

runtime. We evaluate Conditional Convolution with 4 experts that

use an efficientnet b4[79] network as backbone. All dynamic DNNs

are designed for a batch size of 1 and the input image defines the

DNN execution. We use Pytorch [59] implementations.

(3) Static DNNs. CNNs optimized for low inference latency

using neural architecture search (NAS): NASNet [96] (NASNet),
AmoebaNet [67] (Amoeba), SqueezeNet [41] (Squeeze), and Ran-

domWire [88] (RW). These CNNs have highly irregular structures

with many small kernels. We evaluate ACE with a batch size of 1.

6 Evaluation
We evaluate ACE using the following configurations: (i) Baseline:
cuDNN implementation (for DNNs) and jax implementation [33]

(for deep RL simulation). (ii) ACE-SW: Our software-only mecha-

nism is evaluated on real hardware. (iii) ACE-SW-Sim: Our software-
only mechanism evaluated on the GPU simulator with configura-

tions close to RTX3060. We include this to compare against ACE-HW.
(iv) ACE-HW: Our hardware-software cooperative mechanism eval-

uated on the GPU simulator with configuration 1 (Table 3). (v)
ACE-SW-SimC2: Our software-only mechanism evaluated on the

GPU simulator with configuration as in Table 4. (vi) ACE-HWC2 Our
hardware-software cooperative mechanism evaluated on the GPU

simulator with configuration 2 (Table 4). (vii) CUDAGraph: Frame-

work where the inter-kernel dependencies are generated on the

CPU and sent to the GPU. We only present ACE-SW results for the
deep RL workloads as the dynamic and static DNNs rely on cuDNN

libraries, which cannot be modified to use different streams.

6.1 Deep RL Physics Simulations
Fig. 20 depicts the runtimes for the generation of a single batch of

training data from different simulation environments using ACE-SW,
normalized to the baseline approach.

0.0

1.0

2.0

ant human ct w2d grasp gmean

S
p
ee
d
u
p

ACE-SW CUDA Graph

Figure 20: Deep RL physics simulations: Normalized Speedup

Fig. 21 depicts the runtimes for ACE-SW-Sim, ACE-HW,
ACE-SW-SimC2, ACE-HWC2 normalized to the baseline imple-

mentation. We make two observations. First, ACE-SW-Sim, provides
similar speedups as in real hardware compared to the baseline

implementation (up to 1.79× and 1.66× on average). Second,

ACE-HW is able to further improve performance compared to

the software-only approach by alleviating the synchronization

and kernel launch overheads. We observe a slowdown with

CUDAGraph due to the significant latency of constructing the kernel
dependency graph and sending the information to the GPU.

Figure 21: Deep RL physics simulations: Normalized speedup

In Fig. 22, we depict the achieved occupancy for the three config-

urations. Achieved occupancy is calculated as the number of active

warps divided by the maximum number of active warps supported

by the GPU averaged over all clock cycles. We observe that the ACE

is able to significantly increase the achieved occupancy and thus

the utilization. ACE-HW reports higher achieved occupancy because

ACE-SW incurs additional costs before the launch of a new kernel

(launch + synchronization time), during which there is a lower

PACT ’24, October 14–16, 2024, Southern California, CA, USA Durvasula, et al.

number of active warps executing in GPU compared to ACE-HW.
These gaps in launch times contribute to the overall decrease in

achieved occupancy in ACE-SW.

Figure 22: Deep RL physics simulations: Achieved occupancy

6.2 Inference on Dynamic DNNs
Fig. 23 depicts speedup over the baseline for the dynamic DNNs

described in § 5. We observe that ACE is able to provide speedups of

up to 1.39× on dynamic DNN workloads with ACE-HW and on aver-

age 1.05× with ACE-SW and 1.3× with ACE-HW (average 1.07× with

ACE-SW-SimC2 and 1.32× with ACE-HWC2). I-NAS suffers a slow-

down with ACE-SW because this workload has significant kernel

launch overheads when parallelized but are hidden in the baseline

case where the kernels are simply launched serially into a single

stream without synchronization. We observe that CUDAGraph ex-

hibits a significant slowdown due to the overhead incurred during

the construction and communication of the DAG dependencies.

Fig. 24 depicts the corresponding achieved occupancy. We find that

the ACE configurations are able to improve utilization, leading to

performance improvements. As is the case in § 6.1, ACE-HW has a
higher achieved occupancy than ACE-SW because of lower kernel
launch + sync time.

Figure 23: Dynamic DNNs: Normalized speedup

Figure 24: Dynamic DNNs: Achieved occupancy

6.3 Inference on Static DNNs
While our approach is designed for applications with dynamic

computational graphs, we also evaluate its effectiveness in improv-

ing the concurrency of static DNNs. We depict the speedups ob-

tained normalized to the baseline in Fig. 25. We observe an average

speedup of 1.31×with ACE-HW, and a speedup of 1.16×with ACE-SW.
Fig. 26 depicts the corresponding achieved occupancy. We find that

ACE leads to higher GPU utilization, leading to performance im-

provements. ACE-HW has a higher achieved occupancy than ACE-SW
because of lower kernel launch + synchronization time.

We observe that CUDAGraph exhibits similar execution times for

all but one workload as ACE-HW for static graphs. The difference

in performance in one workload occurs because ACE-HW can de-

tect inter-kernel dependencies over a limited window of kernels.

CUDAGraph is able to leverage additional parallelism in the applica-

tion as it contains information on kernel dependencies across all

kernels launched. However, this performance difference is marginal,

and occurs on a single one of the tested static-DNN workloads.

0.0
0.5
1.0
1.5
2.0

NASNet Amoeba Squeeze RW gmean

S
p
ee
d
u
p

ACE-SW-Sim ACE-HW CUDA Graph

Figure 25: Static DNNs: Normalized speedup

0

20

40

60

80

NASNet Amoeba Squeeze RW gmean

A
c

h
ie

v
e

d

O
c

c
u

p
a

n
c

y

(%
)

Baseline ACE-SW-Sim ACE-HW

Figure 26: Static DNNs: Achieved occupancy

0.0
0.5
1.0
1.5
2.0
2.5

a
n

t

h
u

m
a

n c
t

w
2
d

g
ra

s
p

C
C

D
R

I-
N

A
S

N
A

S
N

e
t

A
m

o
e

b
a

S
q

u
e

e
z
e

R
W

g
m

e
a

n

S
p

e
e

d
u

p

W16 W32

Brax
Dynamic

DNN Static CNN

Figure 27: Speedups on varying scheduling window size

6.4 Sensitivity Analysis
Fig. 27 compares the speedups obtained on using scheduling win-

dow sizes of 16 and 32 for ACE-HW over baseline. We observe that

the Brax simulations have higher performance (4.5% on average)

with a window size of 32 compared to 16. However, the window size

has less of an impact on the DNNs. This is because the simulation

engines have more inter-kernel parallelism that is exposed with a

larger scheduling window. This means that while there is still room

to schedule newer CTAs, the amount of inter-kernel parallelism

in the deepRL/dynamic DNNs is not sufficient enough to further

increase utilization significantly.

6.5 Energy Consumption
Fig. 28 shows the normalized energy consumption for the evaluated

workloads. We observe energy savings of 21.6% on average on all

workloads with ACE-HW, and 6.1% with ACE-SW as a result of the

reduction in execution time.

7 Related Work
In this work, we (i) observe that input-dependent inter-kernel de-

pendencies and small kernels are a significant performance bottle-

neck in a range of important applications such as simulation engines

in deep RL and dynamic neural networks; and (ii) propose both a

software-only and hardware-software cooperative mechanism to

enable concurrent execution of kernels with statically unknown

ACE: Efficient GPU Kernel Concurrency for Input-Dependent Irregular Computational Graphs PACT ’24, October 14–16, 2024, Southern California, CA, USA

0.0
0.2
0.4
0.6
0.8
1.0
1.2

a
n

t

h
u

m
a
n c
t

w
2
d

g
ra

s
p

C
C

D
R

I-
N

A
S

N
A

S
N

e
t

A
m

o
e

b
a

S
q

u
e
e
z
e

R
W

g
m

e
a
n

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

ACE-SW-Sim ACE-HW

Brax
Dynamic

DNN Static CNN

Figure 28: Normalized energy consumption
inter-kernel dependencies. In this section, we describe prior work

that aim to improve GPU utilization and kernel concurrency.

Leveraging concurrent streams in DL workloads. Main-

stream deep learning frameworks like Tensorflow [8] and Py-

torch [59] launch GPU kernels into a single CUDA stream that

executes them sequentially. Recent works [30, 55, 57, 95] propose

software techniques to enable concurrent execution of GPU kernels

using multiple streams with static scheduling and stream assign-

ment before application execution. Inter-operator scheduling [30]

partitions a computation graph into sections of kernels that can ex-

ecute in parallel. Out-of-order backprop [57] observes that gradient

computation can be parallelized using CUDA streams into weight

gradients and the output gradient computation during backpropa-

gation. However, these works are only applicable to DL workloads

whose computation graph is static and known ahead of time, of-

ten requiring significant compilation times. Furthermore, these

approaches incur high synchronization overheads.

Task-based programming frameworks in CPUs. Task-based
frameworks [17, 28, 68] enable programmers to describe a program

as multiple tasks scheduled for execution in multiprocessor archi-

tectures [66]. Works such as task superscalar [31], carbon [49],

TDM [19] and ADM [70] propose out-of-order task scheduling to

efficiently leverage irregular parallelism in multiprocessors. The

major bottleneck in these applications is the long latency for depen-

dency checks. Thus, prior work [19, 31, 49, 70] propose hardware

accelerators to alleviate dependence checking bottleneck at runtime.

However, the primary bottleneck on GPUs is the long latency to

launch/signal completion of kernels instead, requiring a different

approach to enable out-of-order scheduling.

Programmer annotations Prior works leverage programmer

annotations as parallelization hints to the compiler. Sinclair et.

al [76], DeNovo [26] use programmer annotations that encode

the data read and written to by each function. This informa-

tion is leveraged to determine independent tasks. Some frame-

works [11, 28, 36, 61, 62] allow programmers to annotate array

regions accessed by each task as a compile time directive. In ACE,

we use a similar approach of using programmer annotations to

help determine parallelism at runtime to enable out-of-order kernel

scheduling.

Software techniques to improve GPU utilization with
concurrent kernel execution. CUDA Graphs [1] and AMD

ATMI [2, 12, 13] are frameworks that allow users to define depen-

dencies between kernels as a directed-acyclic-graph (DAG) prior

to execution. This approach eliminates synchronization and kernel

launch overheads due to communication with the CPU. Nimble [50]

identifies independent GPU kernels prior to execution and concur-

rently schedules independent kernels using CUDA streams. This

approach uses CUDA Graphs [1] to reduce synchronization and

kernel launch overheads. Irregular graphs are also seen in solving

sparse linear equations for CFD simulations [39] and hyperplane

sweep routines [44], where DAG frameworks have been shown

to be effective.We quantitatively compared ACE against a CUDA

graph implementation in § 6. None of these approaches is applicable

to dynamic input-dependent computational graphs. While newer

version of CUDA drivers improve the graph construction times,

caching dependency information and constructing CUDA Graphs

incur non-trivial latencies (§ 2.3).

Hardware support for concurrent kernels.Wireframe [10]

proposes merging multiple kernels into a single large kernel and

performs CTA scheduling with data dependency checks between

CTAs. Blockmaestro [9] enables concurrently running kernels by

identifying dependencies between their CTAs. These approaches

however perform dependence checks by tracing and extracting the

memory loads and stores performed by each thread block of every

kernel. Similar to the software approaches, these approaches are

designed for static computational graphs. The proposed scheduling

and dependency check techniques would be too time-consuming

for runtime scheduling. GPU dynamic parallelism [3, 20, 37, 84]

enables launching kernels from the device itself and allows data

dependencies between a single parent and multiple child kernels.

However, Dynamic-NN and RL simulation workloads contain ker-

nels that depend on multiple kernels, making it difficult to apply

GPU dynamic parallelism.

GPU sharing framework.Multi-Instance GPU (MIG) [6] parti-

tions GPU resources to allow concurrent execution of jobs launched

by multiple users. Since fewer SMs are allocated to a single ap-

plication, this would improve overall GPU utilization. However,

applications such as deep RL and dynamic DNN inference with

low utilization would still be slow as much of the inter-kernel par-

allelism is not being exploited. As ACE leverages this parallelism

and reduces underutilization, ACE can improve performance even

when sharing with another application.

Compilers, runtime systems for dynamic neural net-
works. Prior software [32, 42, 43, 54, 74, 85, 90] and hardware

approaches [47] optimize CPU-GPU communication overheads, and

blocking synchronization calls for dynamic computational graphs.

These approaches introduce techniques such as dynamic batching

and kernel fusion. These works are orthogonal to our approach.

8 Conclusion
We introduce ACE, the first framework that enables automatic con-

current kernel execution with low overhead runtime scheduling

and dependency checks. The key idea behind ACE is to dynamically

schedule a small window of kernels by identifying which kernel(s)

within the window is ready for execution. ACE leverages kernel an-

notations to automatically identify kernel dependencies at runtime.

We implement ACE as both a software framework and a hardware-

software mechanism that is able to further reduce synchronization

overheads from CPU-GPU communication. We demonstrate that

ACE can improve the performance of important emerging classes

of workloads, such as RL simulations and dynamic DNNs, whose

kernel dependencies are irregular and vary with input.

PACT ’24, October 14–16, 2024, Southern California, CA, USA Durvasula, et al.

References
[1] 0 [n. d.]. NVIDIA Inc, Getting started with CUDA Graphs. Retrieved 2020-09-30

from https://developer.nvidia.com/blog/cuda-graphs/

[2] 1 [n. d.]. Radeon Open Compute, ATMI (Asynchronous Task and Memory Inter-

face). https://github.com/RadeonOpenCompute/atmi. Accessed: 2022-09-30.

[3] 2 [n. d.]. NVIDIA Inc, Cuda Dynamic Parallelism. https://developer.nvidia.com/

blog/cuda-dynamic-parallelism-api-principles/. Accessed: 2022-09-30.

[4] 3 [n. d.]. NVIDIA Inc, HyperQ. Retrieved 2023-07-21 from

https://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_

Advanced/simpleHyperQ/doc/HyperQ.pdf

[5] 5 [n. d.]. NVIDIA Inc, CUDA Programming Guide. https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html#streams. Accessed: 2022-11-21.

[6] 6 [n. d.]. NVIDIA Inc, Multi-Instance GPU. https://docs.nvidia.com/datacenter/

tesla/mig-user-guide/index.html. Accessed: 2023-10-10.

[7] 8 [n. d.]. AMD Inc, ROCm Device Enqueue. https://sep5.readthedocs.io/en/latest/

Programming_Guides/Opencl-programming-guide.html#device-side-enqueue.

Accessed: 2022-09-30.

[8] Martín Abadi, Paul Barham, Jianmin Chen, Z. Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath

Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,

Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,

Yuan Yu, and Xiaoqiang Zhang. 2016. TensorFlow: A system for large-scale

machine learning. ArXiv abs/1605.08695 (2016).

[9] AmirAli Abdolrashidi, Hodjat Asghari Esfeden, Ali Jahanshahi, Kaustubh Singh,

Nael B. Abu-Ghazaleh, and Daniel Wong. 2021. BlockMaestro: Enabling

Programmer-Transparent Task-based Execution in GPU Systems. 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA) (2021),
333–346.

[10] AmirAli Abdolrashidi, Devashree Tripathy, Mehmet Esat Belviranli, Laxmi N.

Bhuyan, and Daniel Wong. 2017. WIREFRAME: Supporting Data-dependent

Parallelism through Dependency Graph Execution in GPUs. 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO) (2017), 600–
611.

[11] Matthew D Allen, Srinath Sridharan, and Gurindar S Sohi. 2009. Serialization

sets: a dynamic dependence-based parallel execution model. In Proceedings of the
14th ACM SIGPLAN symposium on Principles and practice of parallel programming.
85–96.

[12] AMD Research. 2017. DAGEE. https://github.com/AMDResearch/DAGEE.git,

Last accessed on 2023-02-14.

[13] AMD Research. 2017. HipGraph. https://github.com/HipGraph/, Last accessed

on 2023-02-14.

[14] Haoyue Bai, Fengwei Zhou, Lanqing Hong, Nanyang Ye, Shueng-Han Gary

Chan, and Zhenguo Li. 2021. NAS-OoD: Neural Architecture Search for Out-of-

Distribution Generalization. 2021 IEEE/CVF International Conference on Computer
Vision (ICCV) (2021), 8300–8309.

[15] Luca Bartolomei, Lucas Teixeira, and Margarita Chli. 2021. Semantic-aware

Active Perception for UAVs using Deep Reinforcement Learning. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 3101–3108.
https://doi.org/10.1109/IROS51168.2021.9635893

[16] Mehmet Esat Belviranli, Seyong Lee, Jeffrey S. Vetter, and Laxmi N. Bhuyan.

2018. Juggler: a dependence-aware task-based execution framework for GPUs.

Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (2018).

[17] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-

erson, Keith H. Randall, and Yuli Zhou. 1995. Cilk: an efficient multithreaded

runtime system. In PPOPP ’95.
[18] Shaofeng Cai, Yao Shu, and Wei Wang. 2021. Dynamic Routing Networks. 2021

IEEE Winter Conference on Applications of Computer Vision (WACV) (2021), 3587–
3596.

[19] Emilio Castillo, Lluc Alvarez, Miquel Moretó, Marc Casas, Enrique Vallejo,

José Luis Bosque, Ramón Beivide, and Mateo Valero. 2018. Architectural Support

for Task Dependence Management with Flexible Software Scheduling. 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA)
(2018), 283–295.

[20] Guoyang Chen and Xipeng Shen. 2015. Free launch: Optimizing GPU dynamic

kernel launches through thread reuse. 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (2015), 407–419.

[21] Jianyu Chen, Shengbo Eben Li, andMasayoshi Tomizuka. 2020. Interpretable End-

to-end Urban Autonomous Driving with Latent Deep Reinforcement Learning.

arXiv preprint arXiv:2001.08726 (2020).
[22] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun

Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible

and Efficient Machine Learning Library for Heterogeneous Distributed Systems.

ArXiv abs/1512.01274 (2015).

[23] Tao Chen, Jie Xu, and Pulkit Agrawal. 2022. A system for general in-hand object

re-orientation. In Conference on Robot Learning. PMLR, 297–307.

[24] Yuxin Chen, Benjamin Brock, Serban D. Porumbescu, Aydin Bulucc, Katherine A.

Yelick, and JohnDouglas Owens. 2021. Atos: A Task-Parallel GPUDynamic Sched-

uling Framework for Dynamic Irregular Computations. ArXiv abs/2112.00132

(2021).

[25] A. Cheng, Chieh Hubert Lin, Da-Cheng Juan, Wei Wei, and Min Sun. 2020.

InstaNAS: Instance-aware Neural Architecture Search. In AAAI.
[26] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, NimaHonarmand,

Sarita V. Adve, Vikram S. Adve, Nicholas P. Carter, and Ching-Tsun Chou. 2011.

DeNovo: Rethinking the Memory Hierarchy for Disciplined Parallelism. 2011
International Conference on Parallel Architectures and Compilation Techniques
(2011), 155–166.

[27] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-

zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. 2016.

The cityscapes dataset for semantic urban scene understanding. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 3213–3223.

[28] Leonardo Dagum and Ram Menon. 1998. OpenMP: an industry standard API for

shared-memory programming. In OpenMP: an industry standard API for shared-
memory programming.

[29] Steven Dalton and Iuri Frosio. 2020. Accelerating Reinforcement Learning

through GPU Atari Emulation. arXiv: Learning (2020).

[30] Yaoyao Ding, Ligeng Zhu, Zhihao Jia, Gennady Pekhimenko, and Song Han.

2021. IOS: Inter-Operator Scheduler for CNN Acceleration. ArXiv abs/2011.01302
(2021).

[31] Yoav Etsion, Felipe Cabarcas, Alejandro Rico, Alex Ramirez, RosaM Badia, Eduard

Ayguade, Jesus Labarta, and Mateo Valero. 2010. Task superscalar: An out-of-

order task pipeline. In 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE, 89–100.

[32] Pratik Fegade, Tianqi Chen, Phillip Gibbons, and Todd Mowry. 2021. Cortex: A

compiler for recursive deep learning models. Proceedings of Machine Learning
and Systems 3 (2021), 38–54.

[33] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and

Olivier Bachem. 2021. Brax - A Differentiable Physics Engine for Large Scale

Rigid Body Simulation. ArXiv abs/2106.13281 (2021).

[34] James Gleeson, Srivatsan Krishnan, Moshe Gabel, Vijay Janapa Reddi, Eyal de

Lara, and Gennady Pekhimenko. 2021. RL-Scope: Cross-Stack Profiling for Deep

Reinforcement Learning Workloads. ArXiv abs/2102.04285 (2021).

[35] James Gleeson, Daniel Snider, Yvonne Yang, Moshe Gabel, Eyal de Lara, and

Gennady Pekhimenko. 2022. Optimizing Data Collection in Deep Reinforcement

Learning. ArXiv abs/2207.07736 (2022).

[36] Gagan Gupta and Gurindar S Sohi. 2011. Dataflow execution of sequential

imperative programs on multicore architectures. In Proceedings of the 44th annual
IEEE/ACM international symposium on Microarchitecture. 59–70.

[37] Izzat El Hajj, Juan Gómez-Luna, Cheng Li, Li-Wen Chang, Dejan S. Milojicic,

and Wen mei W. Hwu. 2016. KLAP: Kernel launch aggregation and promotion

for optimizing dynamic parallelism. 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (2016), 1–12.

[38] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang.

2022. Dynamic Neural Networks: A Survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence 44 (2022), 7436–7456.

[39] Ahmed E. Helal, Ashwin M. Aji, Michael L. Chu, Bradford M. Beckmann, and

Wu chun Feng. 2019. Adaptive Task Aggregation for High-Performance Sparse

Solvers on GPUs. 2019 28th International Conference on Parallel Architectures and
Compilation Techniques (PACT) (2019), 324–336.

[40] HSA Foundation. 2017. HSA Standard. http://hsafoundation.com/standards/,

Last accessed on 2023-02-14.

[41] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.

Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x

fewer parameters and <1MB model size. ArXiv abs/1602.07360 (2016).

[42] Eunji Jeong, Sungwoo Cho, Gyeong-In Yu, Joo Seong Jeong, Dong-Jin Shin, and

Byung-Gon Chun. 2019. {JANUS}: fast and flexible deep learning via sym-

bolic graph execution of imperative programs. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). 453–468.

[43] Eunji Jeong, Joo Seong Jeong, Soojeong Kim, Gyeong-In Yu, and Byung-Gon

Chun. 2018. Improving the expressiveness of deep learning frameworks with

recursion. In Proceedings of the Thirteenth EuroSys Conference. 1–13.
[44] Anirudh Mohan Kaushik, Ashwin M. Aji, Muhammad Amber Hassaan, Noel

Chalmers, Noah Wolfe, Scott Moe, Sooraj Puthoor, and Bradford M. Beckmann.

2019. Optimizing Hyperplane Sweep Operations Using Asynchronous Multi-

grain GPU Tasks. 2019 IEEE International Symposium on Workload Characteriza-
tion (IISWC) (2019), 59–69.

[45] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda,

John M. Allen, Vinh-Dieu Lam, Alex Bewley, and Amar Shah. 2019. Learning to

Drive in a Day. 2019 International Conference on Robotics and Automation (ICRA)
(2019), 8248–8254.

[46] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers. 2020.

Accel-Sim: An Extensible Simulation Framework for Validated GPU Modeling.

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA) (2020), 473–486.

https://developer.nvidia.com/blog/cuda-graphs/
https://github.com/RadeonOpenCompute/atmi
https://developer.nvidia.com/blog/cuda-dynamic-parallelism-api-principles/
https://developer.nvidia.com/blog/cuda-dynamic-parallelism-api-principles/
https://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
https://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://sep5.readthedocs.io/en/latest/Programming_Guides/Opencl-programming-guide.html#device-side-enqueue
https://sep5.readthedocs.io/en/latest/Programming_Guides/Opencl-programming-guide.html#device-side-enqueue
https://github.com/AMDResearch/DAGEE.git
https://github.com/HipGraph/
https://doi.org/10.1109/IROS51168.2021.9635893
http://hsafoundation.com/standards/

ACE: Efficient GPU Kernel Concurrency for Input-Dependent Irregular Computational Graphs PACT ’24, October 14–16, 2024, Southern California, CA, USA

[47] Farzad Khorasani, Hodjat Asghari Esfeden, Nael B. Abu-Ghazaleh, and Vivek

Sarkar. 2018. In-Register Parameter Caching for Dynamic Neural Nets with Vir-

tual Persistent Processor Specialization. 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (2018), 377–389.

[48] Srivatsan Krishnan, Behzad Boroujerdian, William Fu, Aleksandra Faust, and

Vijay Janapa Reddi. 2021. Air Learning: a deep reinforcement learning gym for

autonomous aerial robot visual navigation. Mach. Learn. 110 (2021), 2501–2540.
[49] Sanjeev Kumar, Christopher J. Hughes, and Anthony D. Nguyen. 2007. Carbon:

architectural support for fine-grained parallelism on chip multiprocessors. In

International Symposium on Computer Architecture.
[50] Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-Gon Chun. 2020. Nimble:

Lightweight and Parallel GPU Task Scheduling for Deep Learning. In NeurIPS.
[51] Yunsheng Li, Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Lu

Yuan, Zicheng Liu, Lei Zhang, and Nuno Vasconcelos. 2021. MicroNet: Improving

Image Recognition with Extremely Low FLOPs. 2021 IEEE/CVF International
Conference on Computer Vision (ICCV) (2021), 458–467.

[52] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable

architecture search. arXiv preprint arXiv:1806.09055 (2018).
[53] Lanlan Liu and Jia Deng. 2018. Dynamic Deep Neural Networks: Optimizing

Accuracy-Efficiency Trade-offs by Selective Execution. In AAAI.
[54] Moshe Looks, Marcello Herreshoff, DeLesley S. Hutchins, and Peter Norvig. 2017.

Deep Learning with Dynamic Computation Graphs. ArXiv abs/1702.02181 (2017).
[55] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei Cui, Wenx-

iang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. 2020. Rammer: Enabling

holistic deep learning compiler optimizations with {rTasks}. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). 881–897.

[56] ViktorMakoviychuk, LukaszWawrzyniak, YunrongGuo,Michelle Lu, Kier Storey,

Miles Macklin, David Hoeller, N. Rudin, Arthur Allshire, Ankur Handa, and

Gavriel State. 2021. Isaac Gym: High Performance GPU-Based Physics Simulation

For Robot Learning. ArXiv abs/2108.10470 (2021).

[57] Hyungjun Oh, Junyeol Lee, Hyeongju Kim, and Jiwon Seo. 2022. Out-of-order

backprop: an effective scheduling technique for deep learning. Proceedings of the
Seventeenth European Conference on Computer Systems (2022).

[58] Jacopo Panerati, Hehui Zheng, Siqi Zhou, James Xu, Amanda Prorok, Angela

P. Schoellig University of Toronto Institute for A Studies, Vector Institute for

Artificial Intelligence, and University of Cambridge. 2021. Learning to Fly—a Gym

Environment with PyBullet Physics for Reinforcement Learning of Multi-agent

Quadcopter Control. 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (2021), 7512–7519.

[59] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning

Library. ArXiv abs/1912.01703 (2019).

[60] Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav Sukhatme, and Vladlen

Koltun. 2020. Sample Factory: Egocentric 3D Control from Pixels at 100000 FPS

with Asynchronous Reinforcement Learning. In ICML.
[61] Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesús Labarta. 2009. Hierar-

chical Task-Based Programming With StarSs. The International Journal of High
Performance Computing Applications 23 (2009), 284 – 299.

[62] Antoniu Pop and Albert Cohen. 2012. OpenStream: Expressiveness and data-flow

compilation of OpenMP streaming programs. ACM Trans. Archit. Code Optim. 9
(2012), 53:1–53:25.

[63] Sooraj Puthoor, Ashwin M. Aji, Shuai Che, Mayank Daga, Wei Wu, Bradford M.

Beckmann, and Gregory P. Rodgers. 2016. Implementing directed acyclic graphs

with the heterogeneous system architecture. Proceedings of the 9th Annual
Workshop on General Purpose Processing using Graphics Processing Unit (2016).

[64] Sooraj Puthoor, Xulong Tang, Joseph Gross, and Bradford M. Beckmann. 2018.

Oversubscribed Command Queues in GPUs. Proceedings of the 11th Workshop on
General Purpose GPUs (2018).

[65] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani

Aminabadi, Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. 2022. DeepSpeed-

MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-

Generation AI Scale. In ICML.
[66] Alex Ramírez, Felipe Cabarcas, Ben H. H. Juurlink, Mauricio Alvarez-Mesa,

Friman Sánchez, Arnaldo Azevedo, Cor Meenderinck, Cătălin Bogdan Ciobanu,

Sebastián Isaza, and Georgi Gaydadjiev. 2010. The SARC Architecture. IEEE
Micro 30 (2010), 16–29.

[67] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. 2019. Regularized

Evolution for Image Classifier Architecture Search. In AAAI.
[68] James Reinders, Michael J. Voss, Pablo Reble, and Rafael Asenjo-Plaza. 2020.

++ for Heterogeneous Programming: oneAPI (DPC++ and oneTBB). In C++ for
Heterogeneous Programming: oneAPI (DPC++ and oneTBB).

[69] N. Rudin, David Hoeller, Philipp Reist, and Marco Hutter. 2021. Learning to

Walk in Minutes Using Massively Parallel Deep Reinforcement Learning. ArXiv
abs/2109.11978 (2021).

[70] Daniel Sánchez, Richard M. Yoo, and Christoforos E. Kozyrakis. 2010. Flexible

architectural support for fine-grain scheduling. In ASPLOS XV.
[71] Mark Sandler, AndrewG. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018), 4510–

4520.

[72] Brennan Shacklett, Erik Wijmans, Aleksei Petrenko, Manolis Savva, Dhruv Batra,

Vladlen Koltun, and Kayvon Fatahalian. 2021. Large Batch Simulation for Deep

Reinforcement Learning. ArXiv abs/2103.07013 (2021).

[73] Noam M. Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le,

Geoffrey E. Hinton, and Jeff Dean. 2017. Outrageously Large Neural Networks:

The Sparsely-Gated Mixture-of-Experts Layer. ArXiv abs/1701.06538 (2017).

[74] Haichen Shen, Jared Roesch, Zhi Chen, Wei Chen, Yong Wu, Mu Li, Vin Sharma,

Zachary Tatlock, and Yida Wang. 2021. Nimble: Efficiently Compiling Dynamic

Neural Networks for Model Inference. ArXiv abs/2006.03031 (2021).

[75] Zilin Si and Wenzhen Yuan. 2022. Taxim: An Example-Based Simulation Model

for GelSight Tactile Sensors. IEEE Robotics and Automation Letters 7, 2 (2022),
2361–2368. https://doi.org/10.1109/LRA.2022.3142412

[76] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2015. Efficient GPU

synchronization without scopes: Saying no to complex consistency models. 2015
48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)
(2015), 647–659.

[77] Pravendra Singh and Vinay P Namboodiri. 2020. SkipConv: skip convolution for

computationally efficient deep CNNs. In 2020 International Joint Conference on
Neural Networks (IJCNN). IEEE, 1–8.

[78] Markus Steinberger,Michael Kenzel, Pedro Boechat, Bernhard Kerbl, MarkDokter,

and Dieter Schmalstieg. 2014. Whippletree: task-based scheduling of dynamic

workloads on the GPU. ACM Trans. Graph. 33 (2014), 228:1–228:11.
[79] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for

convolutional neural networks. In International conference on machine learning.
PMLR, 6105–6114.

[80] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. 2016. BranchyNet: Fast

inference via early exiting from deep neural networks. 2016 23rd International
Conference on Pattern Recognition (ICPR) (2016), 2464–2469.

[81] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine

for model-based control. In 2012 IEEE/RSJ international conference on intelligent
robots and systems. IEEE, 5026–5033.

[82] Andreas Veit and Serge J. Belongie. 2019. Convolutional Networks with Adaptive

Inference Graphs. International Journal of Computer Vision 128 (2019), 730–741.

[83] HuanyuWang, Songyuan Li, Shih-Chieh Su, Zequn Qin, and Xi Li. 2021. RDI-Net:

Relational Dynamic Inference Networks. 2021 IEEE/CVF International Conference
on Computer Vision (ICCV) (2021), 4601–4610.

[84] Jin Wang, Norman Rubin, Albert Sidelnik, and Sudhakar Yalamanchili. 2015.

Dynamic Thread Block Launch: A lightweight execution mechanism to sup-

port irregular applications on GPUs. 2015 ACM/IEEE 42nd Annual International
Symposium on Computer Architecture (ISCA) (2015), 528–540.

[85] Jinliang Wei, Garth Gibson, Vijay Vasudevan, and Eric Xing. 2018. Dynamic

scheduling for dynamic control flow in deep learning systems. URL http://www.
cs. cmu. edu/jinlianw/papers/dynamic_scheduling_nips18_sysml. pdf (2018).

[86] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis,

Kristen Grauman, and Rogerio Feris. 2018. BlockDrop: Dynamic Inference Paths

in Residual Networks. In CVPR.
[87] Wenhan Xia, Hongxu Yin, Xiaoliang Dai, and Niraj Kumar Jha. 2022. Fully

Dynamic Inference With Deep Neural Networks. IEEE Transactions on Emerging
Topics in Computing 10 (2022), 962–972.

[88] Saining Xie, Alexander Kirillov, Ross B. Girshick, and Kaiming He. 2019. Explor-

ing Randomly Wired Neural Networks for Image Recognition. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV) (2019), 1284–1293.

[89] Zhaoming Xie, Xingye Da, Buck Babich, Animesh Garg, andMichiel van de Panne.

2021. Glide: Generalizable quadrupedal locomotion in diverse environments with

a centroidal model. arXiv preprint arXiv:2104.09771 (2021).
[90] Shizhen Xu, Hao Zhang, Graham Neubig, Wei Dai, Jin Kyu Kim, Zhijie Deng,

Qirong Ho, Guangwen Yang, and Eric P Xing. 2018. Cavs: An efficient runtime

system for dynamic neural networks. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). 937–950.

[91] Brandon Yang, Gabriel Bender, Quoc V. Le, and Jiquan Ngiam. 2019. CondConv:

Conditionally Parameterized Convolutions for Efficient Inference. In NeurIPS.
[92] Zhao You, Shulin Feng, Dan Su, and Dong Yu. 2021. Speechmoe: Scaling to

large acoustic models with dynamic routing mixture of experts. arXiv preprint
arXiv:2105.03036 (2021).

[93] Kun Yuan, Quanquan Li, Shaopeng Guo, Dapeng Chen, Aojun Zhou, Fengwei Yu,

and Ziwei Liu. 2021. Differentiable Dynamic Wirings for Neural Networks. 2021
IEEE/CVF International Conference on Computer Vision (ICCV) (2021), 317–326.

[94] Zhihang Yuan, Bingzhe Wu, Zheng Liang, Shiwan Zhao, Weichen Bi, and

Guangyu Sun. 2020. S2DNAS: Transforming Static CNN Model for Dynamic

Inference via Neural Architecture Search. ArXiv abs/1911.07033 (2020).

[95] Hongyu Zhu, Amar Phanishayee, and Gennady Pekhimenko. 2020. Daydream:

Accurately Estimating the Efficacy of Optimizations for DNN Training. In 2020

https://doi.org/10.1109/LRA.2022.3142412

PACT ’24, October 14–16, 2024, Southern California, CA, USA Durvasula, et al.

USENIX Annual Technical Conference (USENIX ATC 20). USENIX Association,

337–352. https://www.usenix.org/conference/atc20/presentation/zhu-hongyu

[96] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. 2018. Learn-

ing Transferable Architectures for Scalable Image Recognition. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2018), 8697–8710.

https://www.usenix.org/conference/atc20/presentation/zhu-hongyu

	Abstract
	1 Introduction
	2 Motivation
	2.1 Case Study 1: Simulation Engines for Deep Reinforcement Learning
	2.2 Case Study 2: DNNs with Dynamic Graphs
	2.3 Key Observations

	3 Approach
	3.1 Prior Mechanisms
	3.2 Key Idea of ACE
	3.3 Design Overview
	3.4 Mechanism Walkthrough

	4 Detailed Design
	4.1 ACE Kernel Wrappers
	4.2 ACE-SW Design
	4.3 ACE-HW Design
	4.4 ACE Overheads

	5 Methodology
	6 Evaluation
	6.1 Deep RL Physics Simulations
	6.2 Inference on Dynamic DNNs
	6.3 Inference on Static DNNs
	6.4 Sensitivity Analysis
	6.5 Energy Consumption

	7 Related Work
	8 Conclusion
	References

